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TRANSIT RIDERSHIP EFFICIENCY AS A FUNCTION OF FARES 
 

Gerrit Moore 
 

ABSTRACT 
 

The purpose of this study is to assist in the development of transit fares policies which exploit the 
benefits of public transit in the mix of transportation options for Washington State.  The study 
relates fares to Ridership Performance and Farebox Recovery parameters. 
 
The Ridership Efficiency of each transit system is estimated by multiplying the ridership (unlinked 
trips) by the median income, and dividing by the urban population of the service area and the 
service investment (peak seats) of the system.  A mathematical model is developed which relates 
fares to Ridership Efficiency.  The Ridership Efficiency function follows a Weibull distribution with 
the tail being reached at $0.41.  Higher fares have little impact on Ridership Efficiency.  An 
operating cost model is developed from the transit data in which the independent variables are 
ridership and revenue distance traveled.  This model is used to estimate the farebox recovery and 
operating cost subsidy. 
 
Ridership and Farebox Recovery estimates are made for selected transits.  Farebox Recovery 
reaches a maximum at $0.30, then decreases to a minimum at $0.50.  With Urban systems, fares 
above $0.30 appear to result in a nearly constant subsidy requirement. 
 
The conclusion of the study suggests that a significant percentage of urban trips can be captured 
by transit if appropriate fares policies are established.  A reduced fare experiment is 
recommended for a congested service area or traffic corridor to determine the effect on traffic 
counts and ridership to form the basis of traffic management policies by government agencies.   
 
Key Words:  Transit, Ridership, Fares, Regression, Cost 
 
BACKGROUND 
 
The thrust of most investigations is to improve the farebox contribution to meeting operating costs 
rather than finding a balance between fares and overall community benefits.  Reference (1) 
discusses various fare options but only addresses ridership impacts in an anecdotal manner.  It 
mentions that “Ridership increases of 20 – 40% have been seen with free fares … however, that 
such a policy does not by itself generate long-term increases in ridership, but loses considerable 
revenue as well.”  On the other hand, K. Grace King, et al. in, “Long-term Impact of Fare Free 
Policy on Bus Ridership: A Case Study of WRTD Bus Service,” University of Connecticut 
Departments of Civil and Environmental Engineering and Statistics, Storrs, Connecticut, describe 
the long term impact of fare-free policy on bus ridership for a mid-sized Connecticut bus service 
as providing a sustained ridership increase.   
 
Generally, investigators in (2) and (3) have identified values of fare elasticity varying from -0.17 to 
-0.4.  These studies mostly have been longitudinal.  That is, they have examined single transit 
systems with relatively small fare changes over limited durations.  This has the advantage of 
studying a system with consistent marketing methods in a defined community.  However, these 
studies have the disadvantage of examining a narrow range of fares and might miss regions of 
high volatility where blocks of rider population choose or reject transit over time on the basis of 
fares. 
 
SOURCE DATA 
 
The source data for this study are given in TABLE I. 
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RIDERSHIP EFFICIENCY and EFFECTIVE FARES 
 
 
If the different transit systems in Washington State are to provide a common model of ridership 
demand, a method is required for relating them which accounts for community characteristics and 
transit investment. A parameter of performance called Ridership Efficiency provides this 
relationship which is given in Equation 1. 
 

Rn = RM1 / (Pu S A0)      Equation 1 
 
Where: 
 
Rn = the Ridership Efficiency, 
R = ridership (unlinked trips), 
MI = community income measure (median income), 
Pu = urban population in the service area, 
S = service infrastructure (peak service seats), 
A0 = constant of proportionality, 
 
Pu, the urban population in the service area, along with the reciprocal of median income, MI is the 
potential driver of ridership.  The more people in an area, the greater demand on all modes of 
transportation, including transit.  The urban population of the service area is the population of 
those jurisdictions and Census Designated Places (CDP) within the service area with densities 
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greater than one thousand persons per square mile.  Ridership is generated in areas which have 
a high number of trip origins and destinations.  The inverse of median income, MI, is part of the 
potential driver of Ridership because lower income people are less likely to afford a choice in 
transportation mode. 
 
S, the service infrastructure, is the capacity of the system to meet the ridership demand of the 
population (Pu).  The studies, referenced above, generally use revenue service miles for the 
measure of service infrastructure.  For all the Washington agencies, peak seating capacity has a 
slightly higher correlation to ridership than revenue service miles.   
 
The constant of proportionality (A0) and the fare functions are determined as a part of the data 
analysis, described below. 
 
The complicated fare pricing policies with zone pricing, congestion pricing, transfers, etc., have 
been simplified by using the farebox revenue divided by the ridership.  This is called Effective 
Fares.   
 
Table II shows the input data, and the calculation of Effective Fares and Ridership Efficiency from 
the basic input data.  The table column headings show the calculation steps.  Here, the constant 
of proportionality, A0, is selected so that the ridership efficiency has an average value of one 
where the Effective Fares are zero. 
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There are five transit systems in TABLE II which were not used in the subsequent regressions.  
These are agencies which are identified in (4) as having school or college transportation functions 
or where the fixed route component is not clear.  Data points from these agencies do not 
represent a free market for fixed route service. 
 
The transit agencies listed in TABLE II which charge the highest fares serve the highly urbanized 
regions.  These are regions with the highest congestion and the most limited parking.  The transit 
agencies that charge the lower fares serve communities which do not have high congestion and 
have the easiest parking.  Yet, these are the transit agencies with the highest Ridership 
Efficiency.  Therefore, the examination of such typical cross products as congestion and parking 
costs is not relevant to this study. 
 
Ridership Efficiency and Fares Relationship 
 
The relationship between Effective Fares and Ridership Efficiency is defined by a function which 
is fitted to these date points by Ordinary Least Squares techniques.  Equation 2 is a function 
which fits a wide range of geometries including linear functions and cumulative probability 
functions. 
 

Rn=B1 exp(B2FB
3)+B4     Equation 2 

 
Where:  
 
BBn are constants which are determined in the least squares fitting operation,  
 
exp(f) = the base of the natural logarithm raised to the “f” power,  
 
F = effective fare cost, 
 
BB1 + B4 = fraction of rides which take place if fares are charged, 
 
BB4 = the minimum fraction of rides which take place if any fares are charged, and  
 
BB2 and B3 B define the geometry of the function. 
 
 
 
The Ridership Efficiency relationship to Effective Fares data might be considered in two ways: 
 

• There is a sensitivity to the confrontational act of collecting fares and to the fare price or 
 

• The only sensitivity of ridership efficiency to fares is in the price. 
 
If the regression is made with the consideration that ridership efficiency sensitivity is related to the 
confrontational aspect of demanding fares as well as the fare price, the confrontational change 
component is along the zero-fares axis.  The fare price sensitivity component is in the region 
where the fares are greater than zero.  Then the regression of Ridership Efficiency as a function 
of Effective Fares does not include the $0.00 fare subset.  The difference between the average of 
the zero fares Rn values (in this case, one) and the intersection of the regression with the $0.00 
fare axis would be the estimate of the fare demand loss because of the confrontational aspect of 
demanding fares.  TABLE III lists the result of fitting Equation 2 to the data set, excluding the zero 
fare data set. 
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If the regression is made with the consideration that ridership efficiency sensitivity is related only 
to the fare price, the following are the sample standard deviation of regression residuals: 
 

• Over the total data set = 0.1613399, 
 

• Over the non-zero fare data set = 0.1190923. 
 
The standard deviation of regression residuals is slightly less for the non-zero regression than for 
the regression which smoothed over the total data set.  This suggests that the confrontational-
price loss model is a better reflection of the input data. 
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FIGURE 1 is a plot of the Ridership Efficiency data set and the regression curve. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE1 – Ordinary Least Squares Fit of Equation 2 to Normalized Ridership Data, Excluding 
the $0.00 Fares Points 
 
There appears to be four different regions of fare impact: 
 

• The first region is along the zero fare axis where the ridership efficiency changes with the 
confrontation of fare demand. 

 
• The second region extends from $0.00 to $0.21 fares.  Ridership seems fairly insensitive 

to fare changes (everyone has two dimes or a quarter). 
 

• The third region extends from $0.21 to $0.41 fares.  Here, ridership is very sensitive to 
the fare levels charged. 

 
• The fourth region, the toe of the curve, extends from $0.41 to $0.95 fares.  The slope is 

nearly zero.  People seem willing to pay any fare demanded.  Probably, this is because 
the agencies charging these fares are the larger urban systems where the passenger 
loads are defined by the diurnal commute patterns.  Here, patrons consider the fare costs 
as a part of the employment investment or they are the patrons who do not have the 
means to invest in other transportation options. 
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The third and fourth regions in the fare function are suggested in (3), Appendix A.  This quotation 
is from a paper given by Daniel K. Boyle in 1985 at the 64th Annual Meeting of the Transportation 
Research Board, Washington, DC: 
 

“A second interesting point concerns the concept of a fare threshold.  This concept 
postulates that, as fares rise beyond a certain threshold level, ridership behavior changes 
significantly […]  Elasticities are increasingly negative at higher values of the original fare 
up to the “over 60 cent” category.  In this category, ridership response becomes less 
elastic than the “51 to 60 cent” category.  The explanation driving this version would be 
that by the time a relatively high fare level is reached, most of the “choice” riders have 
already abandoned transit for another mode, and so further increases have less impact 
on ridership.  While the data in Table 1 does not provide conclusive proof that a fare 
threshold of this nature actually exists, further research into this concept would be 
useful.” 

 
In Washington State, the less elastic response region begins at $0.41 rather than $0.60, as 
discussed above.  This difference might be due to the increased competition between modes 
because of the more automobile centered community design in the Western states. 
 
The regression function follows a Weibull distribution.  This would imply that the transportation 
mode choice should be modeled as a probability function.  Equation 2 could be considered a 
cumulative probability function that transit is chosen by the transit using population if the fare 
costs are less than a given value. 
 
Operating Cost Model 
 
An operating cost model is required to evaluate the fiscal impacts of changes in ridership.  The 
four fare-free transits are not included in this analysis.  The cost model used in this analysis is 
regressed from Ridership (R) and Revenue Service Miles (RSM).  The source data are given in 
Table I.  The operating cost model is given in Equation 3. 
 

Cost = RSMC
1(C2+C3RC

4)+C5    Equation 3 
 
The concept for this regression model is as follows: 
 

• If RSM approaches zero, then Cost approaches a minimum (the only costs being 
overhead, C5),  

 
• If R approaches zero, then Cost approaches a function of RSM (the vehicles would still 

operate over the designated routes, but with the number of passengers approaching 
zero),  

 
• Economies of scale might be expected with RSM and R so those parameters are allowed 

to be raised to some exponent (C1 and C4, respectively). 
 
The results of the operating cost regression are given in Table IV.  In addition, the Operating Cost 
per Person (Operating Cost divided by Served Population, Table 1) and Subsidy per Person (the 
difference between Operating Costs and Farebox Income, divided by Served Population) are 
given to show the relative cost and tax burden carried by the service area populations.  The 
subsidy in Washington State is achieved through a special sales tax and a portion of the motor 
vehicle excise tax collected in the transit service area.   
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ESTIMATES 
 
Methods 
 
Ridership estimates for particular transits are made from the Ridership Efficiency (Rn) function.  
The base ridership value (in this case, 1994) is divided by Ridership Efficiency (Equation 2) for 
the corresponding Effective Fare.  This gives the estimate for zero-fare ridership.  The ridership 
as a function of a fare price is estimated by multiplying the zero-fare ridership by the Ridership 
Efficiency (Equation 2).  The following estimates are based on the 1994 ridership performance as 
the point of departure.  They are statements of what might have happened with the particular 
agencies under different fare policies. 
 
Farebox Recovery is calculated by dividing the product of Effective Fares and the resulting 
ridership estimates by Operating Cost (Equation 3).  R, required in this model, is given by the 
ridership estimate.  The RSM estimate requires a further assumption.   
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In the ridership estimate, the urban population and median income are functions of the served 
community so a change in Rn, for a community is a change in the ratio of ridership to seats (see 
Equation 2 description, above).  The number of seats, or vehicles remains constant in this 
estimate.  It is the way they are used that changes.  As Rn increases with decreasing fares, more 
vehicles are used in the non-peak parts of the day until all vehicles (and all seats) are used 
throughout the service period.  RSM increases with the increased utilization of vehicles.  This can 
be estimated from the transit Peak to Base Ratio.  Appendix A, The National Transit Profile, of (7) 
gives the value for the peak to base ratio as 1.8.  This is used in the following estimate.  RSM is 
assumed to change according to Equation 4. 
 
  RSM(F) = RSM(d)*(1 +(P-1)*(Rn(F) – Rn(d)))   Equation 4 
Where: 
 
 RSM(F) = Revenue Service Miles at Effective Fare (F), 

RSM(d) = Revenue Service Miles input value (TABLE I), 
P = Peak to Base Ratio 
Rn(F) = Ridership Efficiency at Effective Fare (F) (Equation 2 with regressed constants), 
Rn(d) = Ridership Efficiency input value (TABLE II). 

 
Since changes in transit performance with changes in Effective Fares (F) involve people moving 
in and out of the transit riding population set, it must be assumed that there is a lag between a 
change in F and a change in R.  There is a paucity of data on these phenomena.  However, the 
time constant, with 63% of the change, appears to be around 2.5 years (if an exponential model 
is assumed).  This is not an accurate estimate but it gives some idea of the time involved. 
 
Examples 
 
In Washington there are four transits which operate with zero-fares.  The oldest of these is Island 
Transit which serves Whidbey and Camano Islands in Puget Sound.  The fare-free transits are 
the most efficient systems as measured by Ridership Efficiency.  The prepaid fares policy 
promotes an egalitarian operation; everybody is invited.  Upon entering the vehicle, the patron 
has only a welcoming experience.  There is no question of having the exact change or speaking 
English when the fare is to be paid.  The service tends to be Spartan.  Island Transit has next to 
the lowest cost per person of Washington State transits (TABLE IV).  There is a high community 
involvement in support of the fare-free agencies.   
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 2 shows 
the performance 
estimate for Island 
Transit. 
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FIGURE 2 - 1994 Performance Estimates as a Function of Effective Fares for Island Transit 
 
Except for the vertical scales, the Ridership Estimate and Farebox Recovery curves shown in 
Figure 2 are typical for all transits.  The Operating Cost Estimate is not shown but it has the same 
shape as the Ridership Estimate curve relative to the Effective Fare Cost. 
 
In the Fare region of $0.00 to $0.21, the Farebox Recovery increases in proportion to Effective 
Fare Cost because, here, R and Cost undergo little change.  Between $0.21 and $0.30, R begins 
its sharp decline as Effective Fare Cost increases.  The first maximum in Farebox Recovery 
occurs at $0.30.  It then decreases to a minimum at $0.50.  Here, R becomes asymptotic with the 
Effective Fare Cost axis so there is slight change to both R and Cost with increasing fares.  From 
this point the Farebox Recovery increases as a near linear function of Effective Fare Costs.  A 
transit system operating in this fare’s region could increase farebox recovery by increasing fare 
prices without a significant decrease in ridership. 
 
References (9) and (10) estimate the cost of fare collection varies from 3 percent to 7 percent of 
the operating cost.  Island Transit could charge fares and have sufficient Farebox Recovery to 
cover the cost of collection.  However, the ridership as a minimum would be reduced to 35 
percent of the fare-free ridership. 
 
Figure 3 shows the ridership and farebox recovery estimate for C-TRAN, which serves all of Clark 
County, including the City of Vancouver.  The actual 1994 Farebox Recovery point, 14.6%, is 
greater than the estimate curve.  This is because the 1994 operating cost is less than the Model 
Estimate value given in TABLE IV.  The Costs per Person, and the Subsidy per Person (TABLE 
IV) are also significantly lower than the other urban transit agencies in Washington State.  These 
three conditions suggest that C-TRAN is under-funded for the population being served and, 
therefore, cannot deliver the service which would result in the expected normalized ridership of 
0.2 rather than the actual 0.11136. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 3 – 1994 Performance Estimate as a Function of Effective Fares for C-TRAN 
 
Portland, across the Columbia River, has no sales tax, which places C-TRAN at a competitive 
disadvantage for subsidizing effective operations. If it did meet the average transit efficiency for 
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$0.33 effective fares, the estimated ridership would be approximately 8,500,000, or twice the 
actual 1994 level.  The $0.33 Effective Fare Cost places C-TRAN Farebox Recovery near the first 
maximum value.  A change in fares would require a corresponding change in the subsidy.  The 
ridership range of C-TRAN is not large enough to offset the operating cost changes with the 
farebox income.  However, if the fares were reduced, Figure 3 suggests improvement in ridership.  
The C-TRAN operating conditions are near optimum, given the financial constraints on this 
system.   
 
FIGURE 4 gives the Ridership and farebox recovery estimate curves for Spokane Transit, which 
serves a 372.5 square mile area, including the City of Spokane.  This is the second largest urban 
center in Washington and the transit reflects the characteristics of a larger urban system.   
 
 
 
 
 
 
 
 
 
 
 

FIGURE 4 – 1994 
Performance Estimate 
as a Function of 
Effective Fares for 
Spokane Transit 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The 1994 Spokane Transit fare is at the toe of the ridership curve, where ridership becomes 
inelastic with fares.  At this point, most of the ridership potential is lost.  Also, the fare is near the 
minimum for Farebox Recovery.  If the Effective Fare cost is decreased from $0.52 to $0.30, R 
and Farebox Recovery would be expected to increase.  Spokane Transit has sufficient ridership 
to offset the operating cost changes with the farebox income so the change to the $0.30 effective 
fare eventually would result in a slight reduction in the required tax subsidy.  This occurs with 
Spokane and not with C-TRAN because of the economies of scale reflected in the operating cost 
model (Eq.3) TABLE V lists fares and the corresponding estimated tax subsidies and riderships.  
This performance is characteristic (with appropriate changes in scale) of the four largest transit 
systems in Washington.  A $0.52 fare places Spokane Transit performance at the least efficient 
locus.  However, the 1994 Spokane Ridership Efficiency is almost twice the Model Estimate so it 
would appear there is very effective management of the system.   
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TABLE V – Spokane Transit Subsidy and 
Ridership Estimates 
Fares                Subsidy            Ridership 
                         Estimate           Estimate 
$0.20             $26,884,856       118,616,655 
$0.30             $18,697,486         89,414,304 
$0.40             $21,789,472         23,617,632 
$0.52             $20,628,783           7,485,275 

 
 
 
 
 
 
Conclusion  
 
This study concludes that Ridership Efficiency is primarily a function of the fare charged.  
Ridership Efficiency function can be described as a probability function.  This is the probability 
that people who are potential transit users will choose transit over other modes or not travel given 
particular fare values.  This function has three components: 

1) The probability that a trip by transit is chosen if any fares are charged (0.33, if fares 
are >0.00), 

 
2) The probability that a trip by transit is chosen if the fare is a particular value (0.33 to 

0.022, if fares are between $0.00 and $0.65), 
 

3) The probability that a trip by transit is chosen if fares exceed a limiting value (0.022, if 
fares are $0.65 and greater). 

 
Fare-free transit agencies would experience a sharp decrease in ridership (67%) if any fares are 
charged.  If it becomes agency policy to collect fares, the fare-free ridership should exceed 
700,000 unlinked trips for a farebox recovery greater than 3 percent, the minimum estimate for 
fare collection costs given in (9) and (10).  The maximum farebox recovery is achieved with a fare 
of $0.30. 
 
Transit agencies which collect fares in the $0.20 to $0.40 range are in the steepest part of the 
Ridership Efficiency cure given in Figure 1.  Here, small increases in effective fares can result in 
marked decreases in ridership. 
 
Fare-free transit agencies would experience a sharp decrease in ridership (67%) if any fares are 
charged.  If it becomes agency policy to collect fares, the fare-free ridership should exceed 
700,000 unlinked trips for a farebox recovery greater than 3 percent, the minimum estimate for 
fare collection costs given in (9) and (10).  The maximum farebox recovery is achieved with a fare 
of $0.30. 
 
Transit agencies which collect fares in the $0.20 to $0.40 range are in the steepest part of the 
Ridership Efficiency curve given in Figure 1.  Here, small increases in effective fares can result in 
marked decreases in ridership.   
 
Transit agencies which collect effective fares exceeding $0.45 are the urban agencies service 
communities with heavy traffic and increased air pollution.  A change in fares has little impact on 
ridership if the fare remains in excess of $0.45.  If an agency in this group were to adopt a policy 
to reduce traffic congestion and air pollution through increasing transit mode share, the most 
direct way is to reduce fares.  The Effective Fares would have to be reduced below $0.45 to have 
even a beginning effect on ridership.  The effective fares for these transits could be reduced to 
$0.30 (the maximum Farebox Recovery point) without a significant increase in tax subsidy 
support.   
 
Regressions are tools for data summary and not prediction unless there is some knowledge of 
the similitude of each member of the data set.  The assumption here is that the people in 
Washington have a common ethos about using transit.  Before any heavy investment is made in 
radical fare change that assumption should be tested in a limited experiment.  It might be 
implemented in a total service area of a medium size system, or in a definable service area sub-
region or in a congested traffic corridor for a large transit system where the problems are most 
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egregious.  Careful counts of ridership and traffic volumes would be made both before and during 
the experiment.  The effective fares would be reduced in annual steps until the desired traffic and 
air quality goals are realized.  For example, the fare might be reduced to $0.40 for a year and 
then the results evaluated.  About a third of the total expected increase in ridership should be 
realized in that period.  Then, the fares might be held at that level or reduced another step, 
depending on the outcome.  The results of the experiment could be applied to the regional 
systems with some confidence in the outcomes. 
 
Any large scale capture of ridership from other modes can be done only through economic 
competition that is consistent with the public’s perception of the transportation market.  This study 
presents a measure of that perception with the variation of ridership efficiency over the regime of 
effective fares in Washington State for 1994. 
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